

Quantitative Comparison of CCS Value Chain with LCO₂ three modes (LP/MP/EP)

Takahiro Rokuroda

General Manager, Green Business Group & Fuel Solution Group, NYK Line Atsushi Tamagawa

General Manager, Gas & LNG Process Engineering Department, Chiyoda Corporation

March 4, 2024

Disclaimer

- CAPEX/OPEX/any other cost information are indications provided by potential suppliers and/or based on inhouse date through previous studies.
- The information provided does not impose any legal commitment nor obligation on Chiyoda/NYK/KNCC or any of its affiliates in any respect.


- 1. Background
- 2. Basis of Study
- 3. System Description in CCS Value chain
- 4-1. Quantitative Comparison for Domestic Case
- 4-2. Quantitative Comparison for Overseas Case
- 5. Outstanding Actions for Social Implementation
- 6. Summary

1. Background

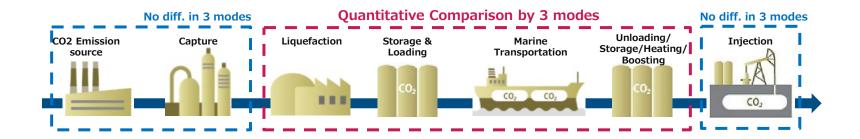
Scope:

CCS value chain with large scale transport by liquefied CO₂ (LCO₂)

Purpose:

Verify the feasibility of 3 modes (LP/MP/EP) in CCS Value chain by investigating the Pros/Cons of each mode in each system and comprehensive evaluation of their suitability in CCS Value chain

Evaluation Items:


- ✓ CAPEX/OPEX relative comparison for each facility
- ✓ Outstanding Actions for Social Implementation

- Post Combution CO_2 capture by chemical solvent (no differences among 3 modes)
- Liquefaction Capacity : 2MTPA CO₂ recovery and liquefaction
- Liquefaction Technology : Propane Refrigerant Cycle
- LCO₂ Transport (Capacity, Loading/Unloading Port) :

Japan Domestic : 20,000 m³, Osaka to Hokkaido (1,550 km) : 40,000 m³ and 50,000 m³, Japan to Australia (5,600 km) Oversea

CO₂ delivery conditions at well head : 10 MPaG, 20deqC

Study Case

	MP Medium Pressure		LP Low Pressure		EP Elevated Pressure	
CO ₂ Capacity	2 MTPA		2 MTPA		2 MTPA	
LCO ₂ Product Conditions	1.3 MPaG/-30°C		0.6 MPaG/-50°C		3.4 MPaG/0°C	
LCO ₂ density	1,000 kg/m3		1,150 kg/m3		930 kg/m3	
Study Case	Domestic	Overseas ^(*2)	Domestic	Overseas	Domestic ^(*3)	Overseas ^(*4)
LCO ₂ onshore storage capacity ^(*1)	22,000 m3	-	22,000 m3	44,000 m3	24,200 m3	55,000 m3
LCO ₂ carrier capacity	20,000 m3	-	20,000 m3	40,000 m3	22,000 m3	50,000 m3
Number of shipping vessels	2	-	2	3	2	3

(*1): 10% margin by LCO2 carrier capacity

(*2): Exclude Overseas case considering low feasibility of oversea transportation by MP carrier

(*3): 110% capacity of volume than MP/LP considering mass density gap between MP and EP

(*4): 125% capacity of volume than LP considering mass density gap between LP and EP

Basis of Unit Cost

The cost is shown in Unit Cost [USD/t-CO₂] calculated by dividing the total cost with the annual volume of CO₂.

Unit Cost =
$$\frac{(CAPEX \text{ or } OPEX)}{Annual CO_2 \text{ tons}}$$

Basis of Onshore CAPEX for Liquefaction, Storage & Loading and Receiving Terminal

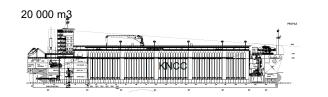
CAPEX = Equipment Cost (incl. Material cost) + Construction Cost (AACE Class 5)

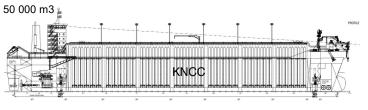
Basis of Onshore OPEX for Liquefaction, Storage & Loading and Receiving Terminal

OPEX = Electricity cost (0.17 USD/kWh) (Compressor, Pump, Cooling tower, Electrical Heater etc.) (excluding other utility since there is no difference among 3 modes)

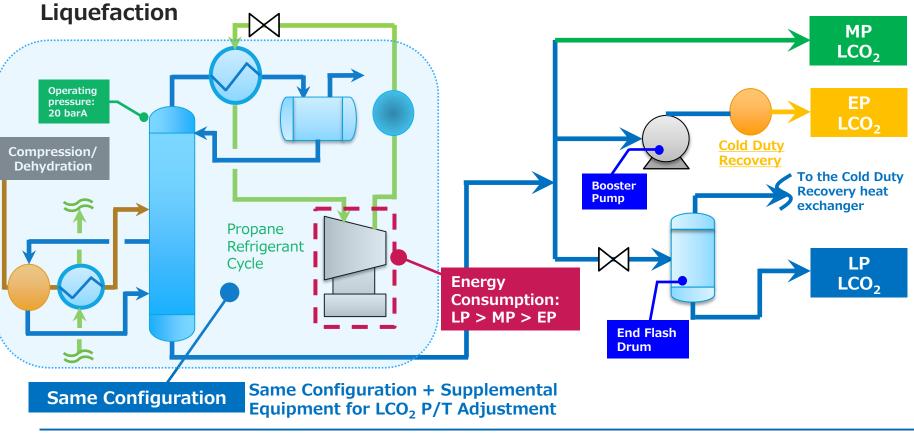
Basis of CAPEX/OPEX for Marine Transportation

CAPEX (Fixed cost)	Vessel Price	Vessel price	
	Crew expense	labor costs of crews on board (number of crews depends on the size & operation of vessel)	
	Vessel stores	cost of equipment and supplies to maintain vessel quality	
	Lubrication	cost of lubricating oil for vessels' main engines and generators	
	Dock cost	reserve for regular repair (twice in every five years)	
OPEX (Semi-fixed	H&M insurance	physical damage protection for the vessels.	
cost)	P&I insurance	covers ship owner's third-party risks for damage caused to cargo during carriage and risks environmental damage such as oil spills and pollution.	
	Ship management	ship management commissioning fees	
	Port cost	fees charged when vessel calls ports. Incl. harbor dues/agency fees, assisting tugs, pilotages etc	
	Fuel cost	Dual Fuel basis (LNG and MGO) in this case	

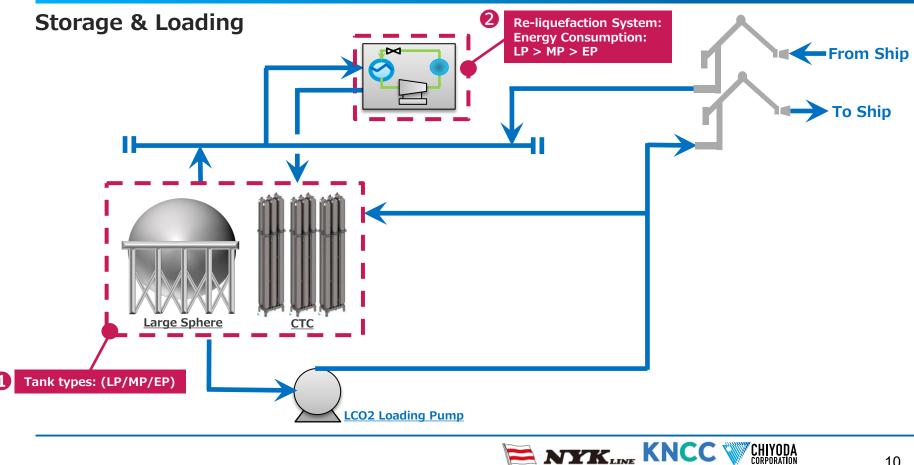

Vessel Conditions:

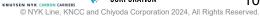

- LNG/MGO dual fueled new built vessel
- Fuel Price: LNG 900 USD/MT, MGO 700 USD/MT
- Sailing Speed: adjusted to most optimal speed between 11.5 14 knots
- Port Cost: 30,000 50,000 USD/Call subject to to vessel size
- Others: Reasonable allowance (bad weather, delay,etc) is taken into consideration.

2. Basis of Study Vessel dimension

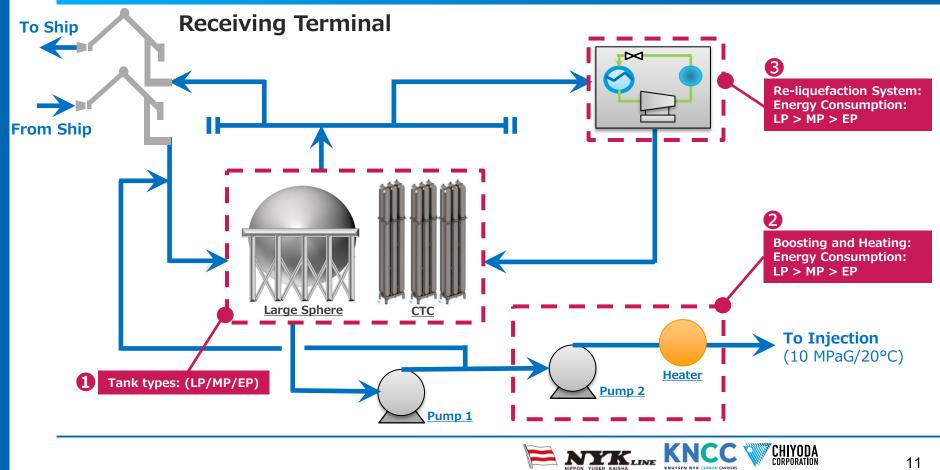

Vessel Type	Tank Volume (m ³)	Loa (m)	Beam (m)	draft(m)	
LP / Type C	20,000	180	27	9.5	
MP / Type C	20,000	188	28	9.3	Domestic Transportation
EP / CTC	22,000	190	30	9.5	
LP / Type C	40,000	230	35.3	11.4	Overseas
EP / CTC	50,000	265	42.6	11.4	Transportation

3. System Description in CCS Value chain

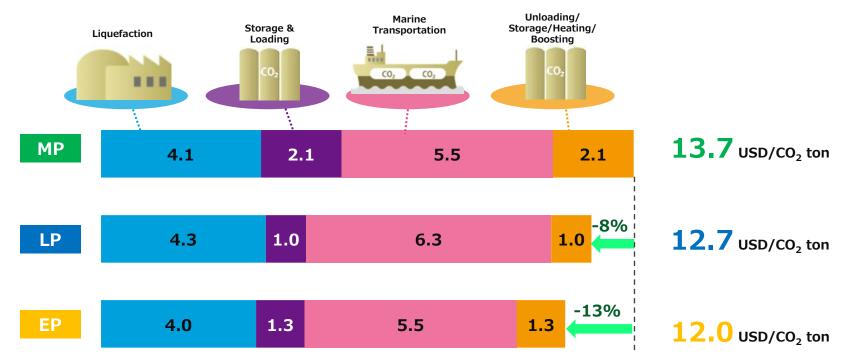




9


CHIYODA CORPORATION

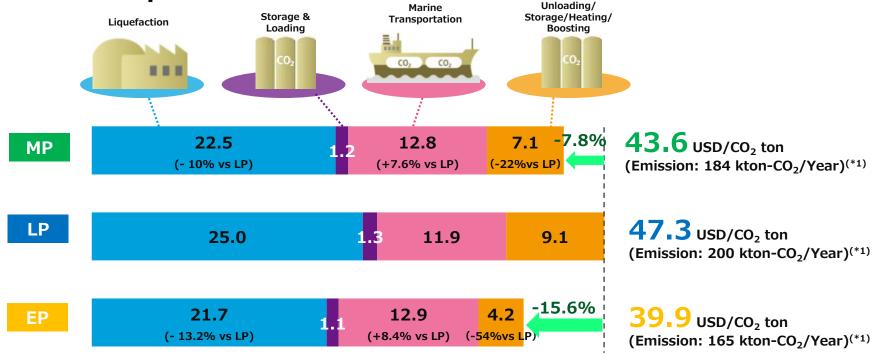
3. System Description in CCS Value chain



3. System Description in CCS Value chain

[©] NYK Line, KNCC and Chiyoda Corporation 2024, All Rights Reserved.

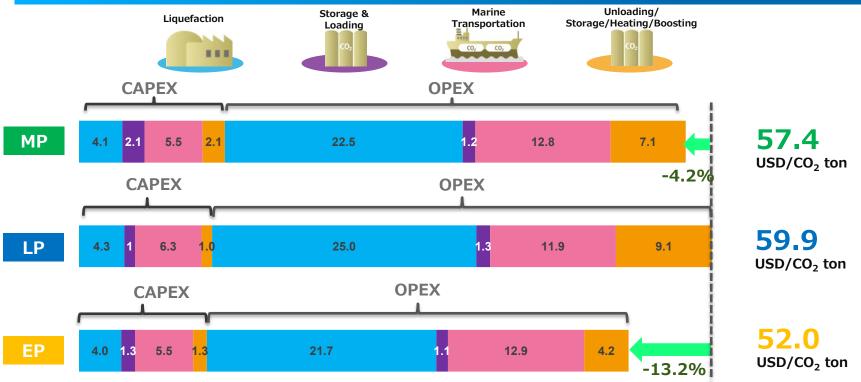
CAPEX Comparison



- 120JPY/USD
- Indication only

CAPEX : excluding financing and miscellaneous cost

OPEX Comparison


(*1): Assumed all energy is fed by LNG (LNG thermal Power, LNG fueled ship)

CHIYODA

CORPORATION

© NYK Line, KNCC and Chivoda Corporation 2024, All Rights Reserved

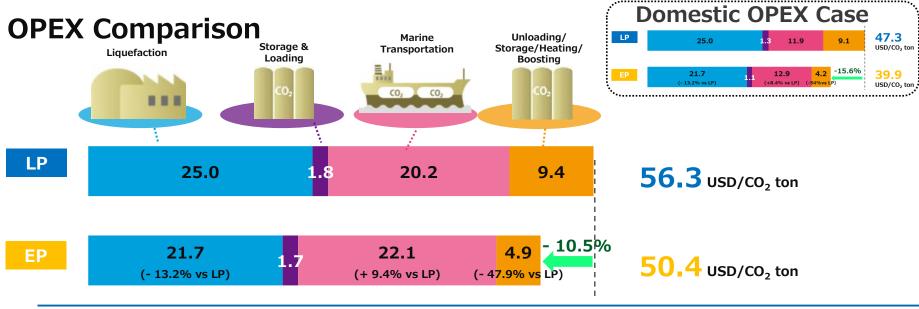
- 120JPY/USD
- Indication only
- OPEX onshore : Electricity only (excluding labor cost /maintenance cost etc…)
- OPEX marine : all inclusive (fuel/port/crew/insurance/dock/R&M etc)

- Unit cost is not covering all cost aspects. Costs assumed to be similar among the three modes is excluded regardless OPEX consists majority of CCS VC cost
 - EP CAPEX is more or less similar while big difference in OPEX cost among the three modes.

- 120JPY/USD
- Indication only
- CAPEX : excluding financing and miscellaneous cost
- OPEX onshore : Electricity only (excluding labor cost /maintenance cost etc…)
- OPEX marine : all inclusive (fuel/port/crew/insurance/dock/R&M etc)

LCO₂ Storage Tank - Breakdown

LP/MP; Spherical tank \Rightarrow 22,000 m³, EP; CTC tank \Rightarrow 24,200 m³

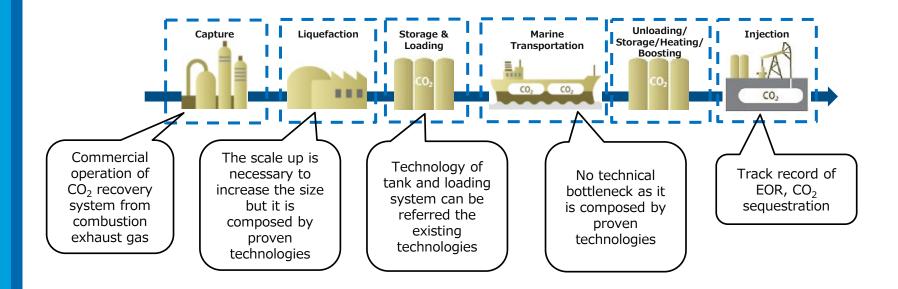

	MP Medium Pressure	LP Low Pressure	EP Elevated Pressure	
Tank Type	Spherical (ID 11,980 mm×32 mm)	Spherical (ID 21,500 mm×37.9 mm)	СТС	
Nameplate capacity	900 m ³ /base	5,000 m ³ /base	240 m ³ /set	
Total empty weight	4,200 tons/28 units (150 tons/unit)	3,350 tons/5 units (670 tons/unit)	10,200 tons/102 sets (100 tons/set)	
Material	Aluminum-killed steel (SPV490)	Aluminum-killed steel (SLA325A)	API 5L X70	
Construction cost Ratio	100	50	60	
	77 months ~	48 ~ 74 months	appx 32 months	
Construction Schedule	EPC sequence (2 crew case) Eng.(10) Civil (12) Fabrication (55)	EPC sequence (2 crew case) Eng.(10) Civil (12) Fabrication (26)	EPC sequence Eng.(10) Civil (12) Installation (4) CTC Manufacturing (6) Building (6)	
Outline Footprint	Approx. 9,000 m ²	Approx. 4,700 m ²	Approx. 3,200 m ²	

© NYK Line, KNCC and Chiyoda Corporation 2024, All Rights Reserved

4-2. Quantitative Comparison for Overseas Case

- Compare LP and EP LCO₂ transport from Japan to Australia
- Scope in Japan domestic part is the same regardless LCO₂ operating mode
- CAPEX is assumed to be in the same order as the domestic case.

→Focus on entire OPEX evaluation


CHIYODA

© NYK Line, KNCC and Chiyoda Corporation 2024, All Rights Reserved

- 120JPY/USD
- Indication only
- OPEX onshore : Electricity only (excluding labor cost /maintenance cost etc...)
- OPEX marine : all inclusive (fuel/port/crew/insurance/dock/R&M etc)

5. Outstanding Actions for Social Implementation

CCS VC utilize existing materials and technologies, and it has less technical uncertainty. On the other hand, the operation, safety, and maintenance philosophies of each facility should be developed in the execution phase of each project, and will be an action item

5. Outstanding Actions for Social Implementation

Outstanding Actions for Social Implementation

	MP Medium Pressure	LP Low Pressure	EP Elevated Pressure
Storage/ Loading/ Unloading	 Require large number of spheri Longer construction schedule, r spherical tank Pressure vessel type tank optio Development of operating proce 	 Development of Operation, Maintainane and Safety Philosophies for CTC tank Development of Annual inspection method Establishment of CTC Supply Chain 	
Marine Transportation	 Technical limiataion of upsizing MP tanks Economic Difficulty in upscaling MP vessels 	 Prevention of possible dryice formation during voyage Material development for cost optimization 	at scale including mill maker, fabrication yard and transportation

6. Summary

- Domestic Comparison: The study compares three modes of LCO₂ liquefaction and transport based on domestic transport in Japan. The CAPEX is equivalent for LP/EP, but relatively high for MP due to the large number of tanks. In terms of OPEX, EP<MP<LP, indicating differences in energy efficiency during liquefaction and injection.
- **Overseas Comparison**: LP has advantage in terms of the energy efficiency for ship transport. However, when considering the entire value chain including liquefaction and injection, it is confirmed that EP has an advantage under the conditions of the study.
- Challenges in the value chain: The study recognizes that temporary storage is the most challenging aspect of the value chain due to the prolonged construction period. This should be addressed with plant owners and suppliers to optimize delivery schedules.

© NYK Line, KNCC and Chiyoda Corporation 2024, All Rights Reserved.

