

Norwegian Initiatives in CCS projects.

Japan CCS Forum 2024

Dr. Per Christer Lund, Counsellor Energy and Technology, Norwegian Embassy in Tokyo

Norwegian sustainability legacy.

Norwegian Prime Minister Gro Harlem Brundtland – UN commission 1987

Early mover: CO2 tax introduced in 1991

Political consensus towards sustainability.

International cooperation: Ocean protection; CCS technology; deforestation..

Norwegian Embass Main domestic Norwegian CCS projects

1996: The starting point – Sleipner CCS

- Worlds first industrial scale offshore CCS project
- In operation by Norwegian energy company Equinor since 1996
- CO2 source: reducing CO2 content in natural gas from 9 to 2.5 %. Offshore/topside capture.
- Financial driver: CO2 tax of ~45 US\$/ton in 1991
- Injection into saline aquifer 800-1000 m
- 1 million ton/year accumulated > 20 million ton injected (45% of Norway's annual emission)
- Comprehensive monitoring for integrity and leaks observed creation of calcium carbonate seals

2008: Second commercial project: Snøhvit LNG with CCS

- Piped CO2
 separated from
 natural gas (5-8%
 CO2) in onshore
 LNG plant, and re injecting in
 sandstone below
 natural gas
 reservoir
- CCS started April 2008 – 1 million ton injected

2011: CO2 atlas for the Norwegian continental shelf

- Compiled by the Norwegian Petroleum Directorate (NPD)
- Objective to map possible sites for long-term storage of CO2
- Study of all geological formations and hydrocarbon fields on the Norwegian part of the North Sea
 - Accumulation of 40 years oil and gas exploration activity
 - Huge amount of seismic data, exploration and production wells
- 21 geological formations assessed grouped into saline aquifer regions
- Total storage capacity of CO2 in the Norwegian North Sea sector can be up to 70,000 Mton.

2012: The CO2 Technology Centre Mongstad (TCM)

2023: Northern Lights – transport, injection and permanent storage of ${\rm CO_2}$

- Facility for CO2 receiving, temporary storage and permanent deposition in saline aquifer
- CO2 transported by specialized vessels from point sources in Europe (Norway, Holland, UK..)
- 110 km pipeline under seabed to permanent storage 2,000 meter below seabed.
- Injection capacity up to 1.5 million ton CO2 per year

CO₂ ship transport

- Currently 4 cargo vessel for CO₂
 7500 m³ capacity
 Tank Operating Condition: 15 barg, c.-26°C
 Offloading @ max 800 m³/hr
- 'LPG standard' design
 Proven concept (based on food industry model)
- Flexible model "milk route"
 - Each ship completes trip in ~ 5/6 from point source port
- Japanese "K" Line has charter contract for the vessels

9 | Northern Lights Open

Visualisation of onshore facilities, West Coast Norway, 🐓

2024: CO₂ capture Norcem Cement Plant – the first wiser of Northern Lights

European eco-system for CCS I

towards an integrated European transport and storage network

Cork

Storage

Full cycle carbon removal and storage

- ➤ Create eco-system for CCS a community
- ➤ Emitters as well as integrated network with other storage locations safe, secure and cost efficient
- > Position for CEF funding (under TEN E)
- A specific, concrete solution for industry by 2024/5, to maintain jobs and reach emission reductions by 2030
- > Flexible to scale up as market develops

