

Japan CCS Forum 2025 MOL's Initiatives for CCS

December 4th, 2025 Mitsui O.S.K. Lines, Ltd. Daisuke Fujihashi

Company Introduction - Mitsui O.S.K. Lines, Ltd. (MOL)

MOL Fleet Scale

LNG Carriers Owned

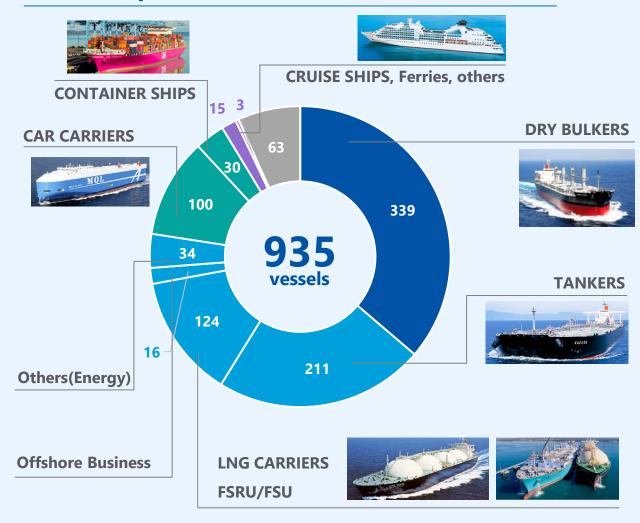
World's Second Largest

World's Largest

935 vessels 107 vessels

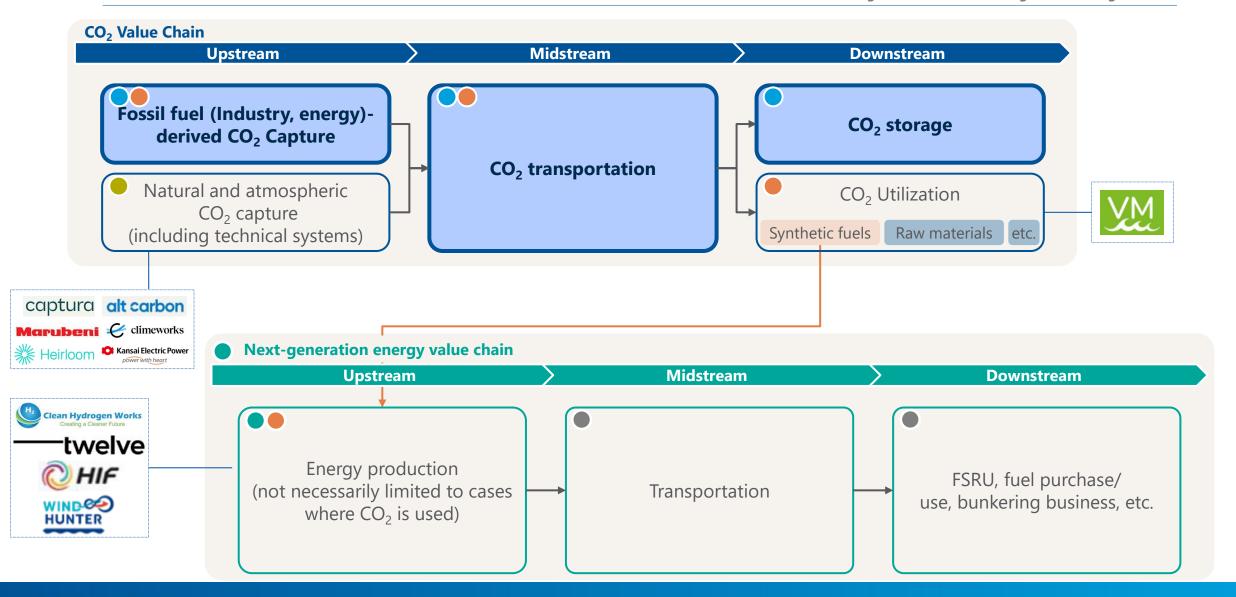
Consolidated Ordinary Profit

Number of MOL Group Employees



Global Presence

27 countries


Fleet Composition

CO₂ & Next-Generation Energy Value Chain

- CCUS Business Development Team
- Coordination and Carbon Recycle Business Development Team
- Next-Generation Energy Development Team
- Carbon Removal Team
- Each Business Organization, Relevant organization/region

Comprehensive Decarbonization Effort in Carbon Solution Development Unit

✓ Our unit is engaged in a wide range of business development contributing to carbon neutrality and negative emissions.

Carbon Removal

CO₂ capture from nature and atmosphere

 Blue Carbon Project: OKI REDD+ Plant mangroves and trees in South Sumatra, Indonesia to absorb and fix CO₂.

NextGen CDR Facility

 Joint carbon credit purchase: NextGen Purchase more than 1 million tons of technical CDR credits by 2025 and expand the market.

CCUS

Develop and promote LCO₂ marine transportation business

 Contribution to the CCUS value chain creation through partnerships and joint investments.

Collaborative study with business partners

 Accumulate knowledge and achievements through collaboration in CCUS value chain.

Coordination and Carbon Recycle

Onboard CO₂ Capture and Storage

- Establish Onboard Carbon capture technology for MOL fleet
- Save transportation energy and cost
- Approach to onboard CCUS standardization and legislation

Research, develop business and manage carbon recycling

- Promote technical research and commercial development
- Study of onboard recycling for captured CO₂

Next-Generation Energy

Manufacture and Develop next -generation energy project

- Invest in clean ammonia and e-fuel production
- Produce "Wind Hunter", which produces MCH using wind power

Utilize and transport nextgeneration energy

- Ammonia, methanol and hydrogen fuel/carrier ship
- Ammonia FSRU, and bunkering ship

Overview of MOL's CCUS Business -Collaboration with Partners-

Technological Development for CO₂ Shipping CO₂ Shipping Transportation

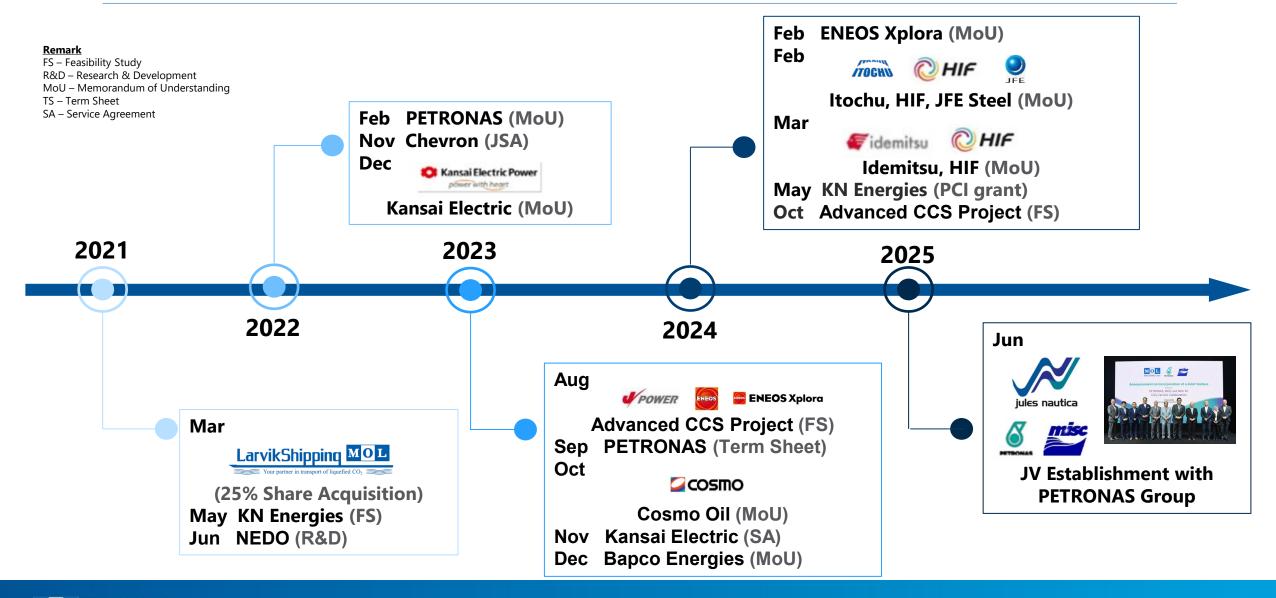
Track Record of CO₂ Shipping

✓ Liquefied CO₂ shipping is a proven technology and Larvik Shipping, in which MOL hold 25% share, has a track record of CO₂ shipping transportation for more than 35 years.

Development of LCO₂ Shipping under LP

✓ Considering the demand for the large-scale, longdistance transportation of CO₂ in APAC region, it is considered necessary to transport under low pressure condition(LP). Since there is not yet any commercial track record under LP, R&D is currently underway.

Larvik Shipping CO₂ Delivery to Northern Lights Project Source: Larvik Shipping LinkedIn



CO₂ Demonstration Ship called "EXCOOL" Source: NEDO Website

MOL's Initiatives for CCUS

MOL's Commercial Development for Liquefied CO₂ Carrier

MOL's Initiatives for CCUS

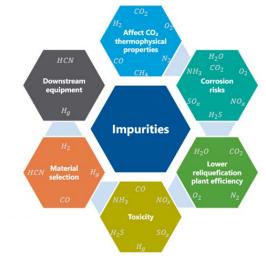
MOL's Technological Development for Liquefied CO₂ Carrier

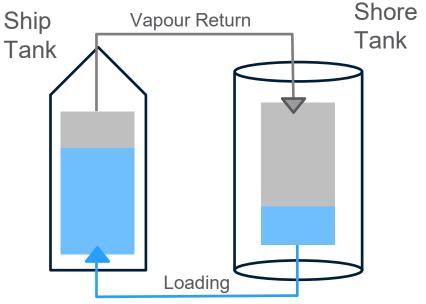
Aug 2023 **R&D Projects Agreement** regarding LCO₂ under LP **Sep 2022 HAZID** and AiP from DNV (50,000m³) Mar 2022 **Concept Study on** NH₃/LCO₂ Dual-Cargo Jun 2023 Carriers (50,000m³) AiP for LCO₂ Carriers and FSO Aug 2022 (87,000m³, 14,000m³) **AiP from ClassNK** (87,000m³ with DPS, 96,000m³ FSO) $(64,000m^3)$ Nov 2021 Concept Study on LCO₂ Carriers

(7,500m³, 53,000m³)

Going Forward

Key Technical Issues for Implementing CCS

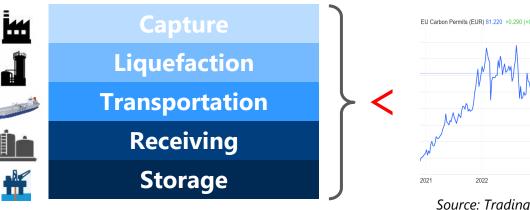



Impurities

- ✓ There is at present no standard CO₂ specification for LP.
- ✓ The LP condition demands more stringent specifications than MP condition, particularly with regard to the presence of water and light components.

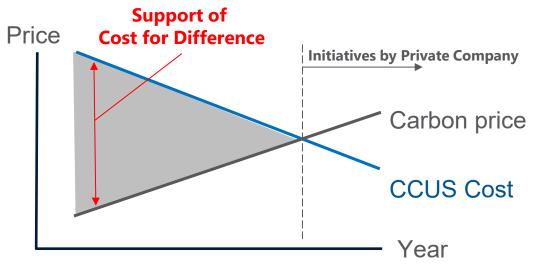
Vapour Return

- ✓ In CO₂ transport operations, vapour return lines enable the balance of pressure between ship and shore.
- ✓ When multiple emitters from different industries share common infrastructure, the mixing of different impurity profiles can cause the unexpected chemical reaction.


Going Forward

Key Commercial Issues for Implementing CCS

Economic Viability


✓ For the implementation of CCS, the total accumulated cost for CCS should be lower than carbon price.

Source: Trading Economics - EU Carbon Permits

✓ Governmental support such as cost for difference between CCUS cost (Capture+Transport+Storage) and carbon price will also be crucial for the implementation of CCS.

DISCLAIMER: The contents of this presentation material are for reference purpose only and should not be regarded as a recommendation or endorsement for any strategic or commercial decisions or an official valuation. The presentation material does not represent an official statement of any from by Mitsui O.S.K. Lines, Ltd.

Contact: <u>team-CCUSS@molgroup.com</u>

